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Abstract—The quasi-chemical approximation in the quasi-chemical model was replaced with an empirical
algorithm which satisfies mixing constraints not satisfied by the approximation. Unlike the quasi-chemical
model, this “quasi-lattice” model will predict unmixing within the miscibility gap rather than a metastable
composition with a positive free energy of mixing. For a solid solution (in which the exchange energy in
each model is fixed by the critical temperature) the two different models can predict similar miscibility
gaps and values of thermodynamic parameters on the boundaries, indicating a lack of sensitivity to the
site-mixing algorithms for these compositions. Temperature and compositional dependencies of the ex-
change energy are proposed to provide modifications of the predicted miscibility gap compositions.

INTRODUCTION

COMMONLY USED solid solution site-mixing models in geo-
chemistry include the ideal model for random site mixing
(e.g., AAGAARD and HELGESON, 1983; PRICE, 1985), the
regular solution model for solid solutions with insignificant
deviations from random mixing (e.g., STOESSELL, 1979,
1984 ) and the quasi-chemical model of GUGGENHEIM ( 1952)
to handle deviations from random site mixing (e.g., GREEN,
1970; STOESSELL, 1981). In addition, there is the method of
BETHE (1935) which is equivalent to the quasi-chemical
model and some of its elaborate and complex extensions such
as the cluster variation model (BURTON and KIKUCHI, 1984).

This study utilizes the statistical mechanical formulation
of the quasi-chemical model but with a different algorithm
for the number of distinguishable configurations due to site
mixing of “A” and “B” atoms. This empirical algorithm,
unlike the quasi-chemical algorithm, does not predict negative
configurational entropies of mixing as the mole fraction of
AB adjacent neighbor pairs deviates from the random value.
The resulting binary, symmetrical model, called the quasi-
lattice model, is then compared to the quasi-chemical model
with and without compositional and temperature dependen-
cies of the exchange energy.

BINARY, SYMMETRICAL SITE-MIXING MODEL
General statistical mechanical formulation and constraints

The general formulation is given by GUGGENHEIM (1952,
Chapter 4). For the binary situation of mixing one mole of
A and B atoms on a lattice, the molar configurational mixing
partition function Q can be approximated by

Q = gexp(—NagWas/kT) (1)

where £ is the degeneracy of the most probable configuration
energy of mixing one mole of 4 and B atoms. N, is the
number of pairs of adjacent 4 and B atoms, and W, is the
exchange energy of an 4B pair of atoms on adjacent sites.
This is the energy difference between an 4B pair and half the
energy of an 44 pair plus a BB pair. T is the temperature in
K, and k is the Boltzmann constant (the ratio of R the gas
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constant to A,, Avogadro’s number of atoms in one mole).
In this study, the number of A and B atoms, N4 plus Ny is
A,, and unless otherwise stated, N, < Np.

From Boltzmann’s relation, S.,r, the molar configura-
tional entropy for mixing is

(2)

And for a condensed phase, Gy, the molar Gibbs free energy
for mixing can be approximated by

G_mix = —kTIn Q_s

gmnf =kln g_

or
Gmix = _Tgconf + ZXABWAB/Z: (3)

where z is the site coordination number, X,z is the mole
fraction of AB pairs, i.e., Nyg/(N4 + Npg + Nyp) for (zA,/
2) pairs, and W, is the molar exchange energy. The nonideal
mixing terms for both entropy and enthalpy are included in
the last term in Eqn. (3). In this study, several possibilities
for W5 will be used. W, is assumed constant in Eqn. (9a),
a function of composition in Egn. (9b), and a function of
both composition and temperature in Eqn. (9¢). X, and Xpg,
used below, refer to mole fractions of A and B, respectively,
in the solid composition.

The correct value of X, is that which minimizes Eqn. (3)
at constant 7 and X,. It is determined by solving for X,z in

aGmix _

0X4p

As given later in Eqn. (12), there is an explicit equation for
X4z, determined from Eqn. (4) in the quasi-chemical model.
The value in the quasi-lattice model was determined nu-
merically using Newton’s method.

Because of symmetry, the critical point composition in the
symmetrical, binary system will be at X, = 0.5. The critical
temperature, 7, occurs when

aG_mix
X, axX3
in which taking the first partial derivative is simplified by

virtue of the partial derivative of X 5 with respect to X, being
zero. There are six cases considered in this study, three for

(4)

_ azG_mix _

0 (5)
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the quasi-chemical model and three for the quasi-lattice
mode! (using the three different definitions of W,z in Eqns.
(9a)-(9¢) with each model). With the exception of the quasi-
chemical model, utilizing Eqn. (9a), T. was matched with
W, from graphical plots. In the one exception, GUGGEN-
HEIM (1952, Chapter 4) provides an explicit relation, Eqn.
(13), between the two quantities.

Additional thermodynamic parameters in the solid solution
model, to be compared between the quasi-chemical and quasi-
lattice models, are the activity coefficient, y,, the molar en-
tropy of mixing, Sqyix, and the molar heat capacity of mixing,
Cpmix. These quantities are computed as follows:

_ 3G i
1 = mix T X == |/RT — s
nYy, (G B ox, )/ In X, (6)
I _aG_mix
Smix 2_—’
aT (7
and
- OSmi
C mix — T“ﬂ .
P oT (8)

mix

In this paper the in Eqn. (6) was determined using

X,
the analytical derivative of Eqn. (3); however, finite difference
L. 3G Soni
derivatives were used for the ——== and the —— terms, re-

spectively, in Eqns. (7) and (8).
Important mass balance constraints in the solid solution
are:

Ny+ Np=A,, Nyi+ Npg+ Nyp=2zA4,/2;
Xq+tXpg=1, Xyp+ Xgy+ Xpp=1;
Xa= Xaat+ Xan/2, Xp= Xps+ Xun/2;
and
0<X,p=<2X, where N, < Np.
Mixing constraints in the solid solution include the following:
0< Xy <2X Xp for We> 0,
2X,Xp < Xyp <2X, for Wy <0,
Xug =2X, Xz and Sine = R(X,In X, + XzIn X5),
for random mixing when W, = 0;
Xip=0 and S,.= 0,
for total unmixing as Wyg— +o0;
X4p=2X, and S—conf =0,
for total order as W,z = —0
in which X, < Xj;

aS_ conf

x, O

for symmetry at X, = Xp;

and with increasing departure from random mixing, Sconr
should decrease more rapidly from its random value, when
z is larger; conversely, Senr should increase more rapidly
from zero (at X,z = 0 and 2.X,) with smaller values of z.
The algorithm g in Eqn. (1) describes the number of dis-
tinguishable configurations and is a direct function of Xz
and X,. It is an indirect function of W, since X is found
by minimizing G in Eqn. (3) with respect to X 45 at constant
composition and temperature. Both the quasi-chemical and
the quasi-lattice model (developed in this paper) for the bi-
nary symmetrical case will utilize Eqns. (1)-(3). The dif-
ferences are in the assumed form of the algorithm g and that
the quasi-chemical model does not generally follow the mix-
ing constraints for total order and total unmixing. 1t is im-
portant to emphasize that the correct algorithm for g (in
three dimensions) is known only for random mixing. Both
the quasi-chemical and quasi-lattice algorithms are empirical
algorithms that reduce to the random case when W 45 is zero.
In this paper, W, is defined in terms of W7, the value
at the critical temperature of mixing with or without a com-
positional and temperature dependence. The critical tem-
perature T, is the temperature above which stable mixing
occurs at all compositions. Three situations will be considered:
a constant value defined by Eqn. (9a), a compositional de-
pendence defined by Eqn. (9b), and a compositional and
temperature dependence defined by Eqn. (9c¢).

WAB = W:B, (9a)

Wap = Wis(4X,Xp), (9b)
and

Wap = Wis(4X,Xp) T/ T. (9¢)

The compositional dependence is a multiplication factor
4 X, X which increases from zero to unity as X4 varies from
0 to 0.5, being symmetrical about X, = 0.5. The temperature
dependence is an additional multiplication factor 7./ T which
decreases to unity and below as the temperature rises and
passes the critical temperature. These factors are empirical,
yet they do have a certain common sense to them. If site
mixing causes lattice distortion (i.e., for positive W,p) we
would expect the distortion to be at a maximum when X is
0.5 and to approach zero as X, or Xz approaches zero. Sim-
ilarly, because of lattice expansion with increasing temper-
ature, we would expect the relative distortion due to mixing
to be less significant with increasing temperature.

Symmetrical quasi-chemical model

The symmetrical, binary quasi-chemical model was de-
veloped by GUGGENHEIM ( 1952, Chapter 4). In this discus-
sion, only the assumptions will be given together with Gug-
genheim’s results. The notation of W and X used by Gug-
genheim are equal, respectively, to (zW,p) and N,p/ z in this
study. His model is based on the assumption that the number
of configurations is proportional to the number of configu-
rations resulting from mixing pairs of sites without regard
for the fact that each site is included in more than one pair
of sites.
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For a particular value of Xz, £ is set equal to the number
of configurations resulting from random mixing times a nor-
malization factor. The normalization factor sets g to that of
random mixing of atoms when W,z is equal to zero but gen-
erally not to unity when W, = +00 or —co. The result is
that G is generally not zero when X5 is 0 or 2.X4 for X,
< Xg. For these cases, the quasi-chemical model does not
predict X,z = zero with increasing values of positive W,
relative to 7.

From GUGGENHEIM (1952, Chapter 4), g in the quasi-
chemical model becomes

_ [(Na+ Np)! [ NNl ((N2p/2)!)?
| NANg! [ N Nag!((Nag/2)D? ]

(10)

Note that the first bracketed set of terms is just the number
of configurations due to random mixing of 4 and B atoms.
The * terms in the numerator of the second bracketed are
the random mixing values of the terms in the denominator.
They are computed assuming random mixing of pairs, ne-
glecting the fact that each site is shared with z pairs. The
denominator terms are solved for by using the constraint of
Eqn. (4) and the mass balance relations.

From Egns. (2) and (10), S...r becomes for the binary,
symmetrical case:

Seomt = —R(X4In X4 + XpIn Xz) + gR(Xf, In (X2)

+ 2XAXB In (XAXB) + X%g In (X%) - XAA In XAA
X
— X5 In f — Xggln Xgg). (11)
Gumix is found by substituting Eqn. (11) into Eqn. (3). X,z is

determined using Eqn. (4), resulting in

1 — (1 —4X,Xs(1 — exp(2W.,5/RT))'/?
1 — exp(2W,5/RT) ‘

Xap = (12)

One of the most useful aspects of the quasi-chemical model
is that Eqgns. (2), (11), and (12), together with the previously
given mass balance constraints, provide an explicit expression
for Gumix in Eqn. (3). There is no need to resort to a numerical
solution for G-

Equation (13) is from GUGGENHEIM (1952, Chapter 4)
and provides a relation between W, and T, in °K when
W 5 is a constant, defined by Eqn. (9a):

W =RT.In(z/(z —2)). (13)

All other thermodynamic parameters in the quasi-chemical
model were computed using Eqns. (6)-(8) as discussed in
the previous section.

Symmetrical quasi-lattice model

The algorithm g, presented below, is an empirical expres-
sion that satisfies the previously mentioned mixing relations,
including those not satisfied by the quasi-chemical model.
The basis of the algorithm is the assumption that the number
of distinguishable configurations can be computed using a
random site-mixing model in which the lattice size decreases

as X,z deviates from its random value of 2.X,X. The idea
is that a certain number of sites on the lattice are reserved
for A and B occupancies in order to have a particular value
of X 5. These sites are removed from the random site-mixing
algorithm, and the number removed will increase as X5 ap-
proaches zero or 2.X4.

Accordingly, £ could be represented by Eqn. (14).

(N4 + Np)h)!

(N4h) (Ngh)! (4

g:

where N, < Ngand A is a function of X, and Xz. Substitution
of Eqn. (14) into Eqn. (2) yields

Scont = —RA(X4 In X, + XpIn Xp). (15)

Mixing constraints require 4 satisfy the following condi-
tions:

h=1 when XAB = 2XAXBy

h=0 when XAB =0 and XAB = 2XA,

oh

aXAB =0 when XAB = ZXAXB,
oh

X 0r =40 when X, =0, and
oh

X =—oo when X =2X,.

In this study, /4 has been set equal to the sum of two equa-
tions: #,, a quadratic equation containing a “In” term to
satisfy the above ““infinity conditions” and #,, a cubic equa-
tion added to provide a functional dependency of z. The
minimum z value of 2 sets &, equal to zero in the summation.

h=h1+h2 (16)

Both 4, and A, satisfy the constraints for 4 except that at X 4p
= 0 and 2X,, A, has a partial derivative of zero, and at Xz
=2X,Xg, hyand b, =2/zand (z — 2)/z, respectively. Coef-
ficients in Eqns. (17)—-(20) below were determined with those
constraints.

For the region 0 < X5 < 2X, X (i.e., Wa5 = 0):

2XAXB (Z_ZXAXB)
h = Xyl X
1 AB n[ X ] X, X, 4B
(zZX Xp— 1) _,
—————— Xas, 17
2z2(X,Xp)> TP {7
and
3(z—2 2(z—2
hz_i_)-XZB____(uXiB' (18)

T Z(2XX6)2 T Z(2X.Xs)?

For the region 2.X, X5 < X5 < 2X,4 (i.e, Wop < 0):

2Xf, (Z—ZX,%)
h=(2X4—Xup)1
1= (2X, 48) n[ZXA—XAB] ZX,24
(zX3-1)

X (2X4— Xup) + (2X, — Xa5)® (19)

2zX4
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and
3(z—-2)
hy = m“ (2Xx,— XAB)2

-E X xw? (20)

Gmix is defined using Eqns. (15) and (16) and, depending

upon W, either Eqns. (17) and (18) or Eqns. (19) and

(20)in Eqgn. (3). The correct value of X,z to use in Eqn. (3)

was found numerically with Newton’s method with Eqn. (4).

All other thermodynamic parameters were computed using
Eqns. (4)~(8) as previously discussed.

RESULTS AND DISCUSSION

Seonf Values are plotted for the quasi-chemical model and
the quasi-lattice model on Figs. 1 and 2, respectively, as a
function of X,z. On Figs. 1a and 2a, the curves represent
different values of z at a solid solution composition of 0.5 X,.
On Figs. 2a and 2b, the curves represent different composi-
tions at a z of 6. Values of S.onr predicted by the quasi-chem-

§1'.‘sz (COI/mO|/°K)

Seont (cal/mol/°K)

FIG. 1. S.onr versus X, for the quasi-chemical model: (a) for dif-
ferent values of z at X, equal to 0.5; (b) for different compositions
at z equal to 6.
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FIG. 2. S.ons versus X4z for quasi-lattice model: (a) for different
values of z at X, equal to 0.5; (b) for different compositions at z
equal to 6.

ical model can be negative and generally do not approach
zero as X, approaches zero or 2 X,,. Values of Son¢ predicted
by the quasi-lattice model are always positive and do approach
zero as X,p approaches zero or 2.X,. Although the quasi-
lattice model obeys all the mixing constraints (unlike the
quasi-chemical model), the minor functional dependence of
Seont 0N z indicates the algorithm could be further improved.

The potential for negative S.ons causes the quasi-chemical
model to predict a larger X4z for a given composition than
does the quasi-lattice model. This prevents the quasi-chemical
model from predicting X5 approaching zero with increasing
W,5. The result, as shown on Fig. 3, is that the quasi-chemical
model predicts positive Grmix With nonzero X5 when the quasi-
lattice model predicts Gpix approaching zero with X,z ap-
proaching zero.

On Fig. 3, Guix is plotted versus composition at 500°C for
the two models using the three definitions for Wz, given in
Eqgns. (9a), (9b), and (9¢) and a z value of 6. The value of
W *,in each situation has been fixed by assuming a common
critical temperature of 1150°C. The z and 7. correspond to
that of the disordered, binary, asymmetrical rhombohedral
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FIG. 3. G, versus X, at 500°C for the quasi-lattice model (solid
curves) and the quasi-chemical model (dashed curves) with z = 6,
T. = to 1150°C, and W, defined by: Eqn. (9a), curves C; Eqn.
(9b), curves E; and Eqn. (9c¢), curves D. W values in (cal/mol)
are: 1,167.946, solid curve C; 1,146.689, dashed curve C; 517.170,
solid curves D and E; and 517.195, dashed curves D and E. The
values are explained in the text.

carbonate system, CayMg;_x)CO; (REEDER and NAKAJIMA,
1982). This system is one which the author will attempt to
model in a later publication with an asymmetrical, binary
quasi-lattice model. The parameters are used here because
the low temperature arm for X, < 0.5 of the “D’” curves,
defining the immiscibility gap on Fig. 4, is close to that ex-
pected for the calcite arm with magnesite (component A)
dissolved in calcite (component B), e.g., see GOLDSMITH
(1983, Figs, 9 and 10).

The procedure followed in determining W%z, with one
exception, was to find (graphically) the largest W% at 7.,
that would produce a concave curve of Gy, versus X, at X,
equal to 0.5. The one exception was the quasi-chemical model
with W%z defined by Eqn. (9a) for which Eqn. ( 13) can be
used to directly calculate 1 %z. Because Eqns. (9b) and (9¢)
are equivalent at 7, those W73 values are the same for a
particular model. W3 values are reported below in cal/mol
where a calorie is equivalent to 4.184 joules. For the quasi-
chemical model, the W% values, used on Figs. 3-7, are
1,146.689 cal/mol for W,z defined by Eqn. (9a) and 517.195
cal/mol for W,z defined by Eqns. (9b) and (9¢). The cor-
responding values for the quasi-lattice model are 1,167.946
and 517.170 cal/mol, respectively.

On Fig. 3, Gnix decreases at constant composition, going
from W, being a constant (curves C), a function of both
temperature and composition (curves D), and a function of
composition (curves E). The trend is due to a decrease in
the computed W,z values in Eqns. (9a), (9¢), and (9b),
respectively. In addition, for each family of two curves, Gumix
is more positive in the quasi-chemical model (dashed curve)
than in the quasi-lattice model (solid curve). However, these
differences are insignificant outside of the miscibility gap.

In Fig. 4, the boundaries of the miscibility gap are plotted
for the quasi-chemical model (dashed curves) and the quasi-
lattice model (solid curves) for each of the three cases defining

W, curves C (Eqn. 9a), curves D (Eqn. 9¢), and curves E
(Eqn. 9b). The boundaries of the miscibility gaps were de-
termined graphically using Gy, plots versus X, as on Fig. 3.
The differences between miscibility gaps between the two
models are nearly insignificant within each family of curves,
i.e., between the dashed and solid curves for C, D, and E.
The differences in S...c between the two models, shown on
Figs. 1 and 2, have an insignificant effect on the location of
the miscibility gap boundaries. There is a much greater effect
on the position of these boundaries due to the method used
in computing W,: holding it constant (curves C), having a
compositional dependence (curves E), or having both a tem-
perature and compositional dependence (curves D). As ex-
pected, the larger the W,; value, the wider is the miscibil-
ity gap.

Several additional thermodynamic properties: the In y,
the Simix and the Cpix are plotted, respectively, on Figs. 5,
6, and 7 as a function of temperature along the miscibility
gap shown in Fig. 4. These were computed, as previously
discussed, using Eqns. (6), (7), and (8). Again, the major
point is that the differences in predicted thermodynamic
properties between the two models are insignificant along the
boundaries of the miscibility gap with the possible exception
of Cpmix on Fig. 7. As expected, from Fig. 4, the predicted
thermodynamic properties are highly dependent upon the
method used to compute Wz, as indicated by differences
between the C, D, and E curves on each figure.

An asymmetrical binary model is under development for
the quasi-lattice model and will be compared with the quasi-
chemical model in a later publication. Guggenheim’s asym-
metrical form of the quasi-chemical model is based on mixing
monomers, dimers (and other polymer species) on the sites
(GUGGENHEIM, 1952, Chapter 11). GREEN (1970) success-
fully used Guggenheim’s formulation to model the NaCl-
KCl system. The form of the asymmetrical quasi-lattice model
under development has asymmetrical expressions for both g
and W,z in which the asymmetry is a function of X * the
critical composition at 7. The asymmetrical, binary quasi-
lattice model will reduce directly to the symmetrical model
of this study when X is 0.5.

1200
C
Vs N
/4 &
/ 8
7 \
/ \
800  , \
8 ! \
< ] JE 1. = 1150 W
- N z =6 W
[ i
400
__ Quasi-Lattice
_ ~ - Quasi—-Chemical
0 i i i 1 e L L i "
0.0 0.2 0.4 0.6 0.8 1.0

Xa

FiG. 4. Immiscibility boundary compositions for the binary system
with the curve parameters listed in caption for Fig. 3.
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1200

800

T (°C)

400

In ya

F1G. 5. Temperature versus 1n y 4 along the immiscibility boundary
curves shown in Fig. 4 using the parameters listed in Fig. 3. The left
legs of the curves on Fig. 4 correspond to the right legs of the curves
on Fig. 5 and vice versa.

SUMMARY

An empirical, alternative site-mixing algorithm to the
quasi-chemical algorithm is proposed for a binary, symmet-
rical model. The resulting model, the quasi-lattice model,
satisfies mixing constraints when X5 is far from its random
value of 2X,Xz. These mixing constraints are not satisfied
by the quasi-chemical model. The exchange energies in both
models were modified by proposed compositional and tem-
perature dependencies which should prove useful in modeling
real systems with the asymmetric forms of the models.

A comparison of predicted values of Guixs Smixs CPumixs
and the composition boundary of the miscibility gap was
made for a binary system with a z value of 6, a T, of 1150°C,
and with and without compositional and temperature de-
pendencies of W,;. While, there are major differences be-
tween the two models within the miscibility gap, the differ-
ences were insignificant along the boundaries of the miscibility
gap, indicating an insensitivity in the binary, symmetrical

1200 r Along .
Miscibility

800

T (°c)

1150°C |

400 z =6 .
—aL |
---Qc |

0 1 1 A .

1
Smix {cal/mol/°K)

FIG. 6. Temperature versus Smi, along the immiscibility boundary
curves shown ir Fig. 4 using the parameters listed in Fig. 3.
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Miscibility
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-1 0 1

CPmix (cal/mol/°K)

FIG. 7. Temperature versus Cpy;, along the immiscibility boundary
curves shown in Fig. 4 using the parameters listed in Fig. 3.

case to the site-mixing algorithms for these compositions.
Predictions from both models were very sensitive to the pro-
posed temperature and composition dependencies of Wip.
An asymmetrical form of the binary, symmetrical quasi-lat-
tice model is in preparation and will be used in a later pub-
lication to model various binary carbonate systems.
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